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Monitoring Profile Trajectories with Dynamic
Time Warping Alignment
Chenxu Dai,a Kaibo Wanga*† and Ran Jinb
In conventional profile monitoring problems, profiles for products or process runs are assumed to have the same length.
Statistical monitoring cannot be implemented until a complete profile is obtained. However, in certain cases, a single profile
may require several days to generate, so it is important to monitor the profile trajectory to detect unexpected changes
during the long processing cycle. Motivated by an ingot growth process in semiconductor manufacturing, we propose a
method for monitoring growth profile trajectories of unequal lengths. The profiles are first aligned using the dynamic time
warping algorithm and then averaged to generate a baseline. Online monitoring of trajectories is performed based on
incomplete growth profiles. Both simulations and an actual application are used to demonstrate the use of the proposed
method. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

S
tatistical process control (SPC) methods are extensively used to monitor and improve quality and productivity in manufacturing
and service operations.1,2 One important tool is the control chart, which is often used to monitor the key process variables and to
trigger alarms when abnormal changes are detected. In the literature, various methods have been developed for processes with

one variable or multiple correlated variables.2 Recently, profile monitoring has received more attention.3,4 A profile, which is
represented in the form of a functional curve, defines the relationship between one response variable and one or more explanatory
variables (e.g., time and locations).

If the profile can be fitted using a parametric model, the model parameters are usually monitored.5,6 For example, to monitor a
linear profile, Kang and Albin7 fitted a simple linear regression model to the Phase I data and monitored all the parameters and
the residual standard errors using T2, exponentially weighted moving average (EWMA), and R charts. To monitor a more complex
roundness profile, Colosimo et al.8 proposed the use of a spatial autoregressive regression model, based on which a vector of
parameters is estimated and used for statistical monitoring.

If the profile is so complicated that it cannot be characterized by any reasonable parametric form, nonparametric methods are
sometimes employed. In nonparametric control charts for profile monitoring, the charting statistic is usually based on metrics that
measure the departure of the observed profiles from a baseline.3 Jones and Rice9 and Nomikos and MacGregor10 proposed to monitor
the scores of principal components and the residuals obtained from principal component analysis. Jeong et al.11 used wavelets to
transform high-frequency signals for process monitoring. Walker and Wright12 demonstrated the use of spline models to fit and
monitor complex profiles. Zou et al.13 used nonparametric regression to fit a model to a profile dataset. To filter out rotation,
translation, and isometric scaling (dilation) effects, Del Castillo and Colosimo14 proposed a generalized Procrustes algorithm that uses
the full Procrustes distance as the metric after the profiles are registered or superimposed. Noorossana et al.4 presented a
comprehensive summary that covers a wide range of research on the statistical analysis of profile monitoring.

The conventional profile monitoring methods are usually based on the assumption that the complete profile is available so that
the charting statistics can be calculated. Thus, all observations for a profile are required to construct the control chart. However, in
certain manufacturing processes, the production cycle is rather long. Any faults that occur during the production cycle should be
detected immediately upon appearance rather than waiting until the end of the production cycle. In such cases, a dynamically
growing profile trajectory, which could be treated as a partially observable growth profile, should be monitored online.

In the ingot growth process, which is our motivating example, the ingot grows in an automated furnace (shown in Figure 1). In this
process, raw polysilicon materials are melted in a quartz crucible to a temperature of more than 2000°F. A seed crystal is dipped into
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Figure 1. A schematic drawing of the single-crystal ingot growth furnace.
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the molten silicon and withdrawn slowly to induce the growth of a single crystal ingot. The cycle time required to grow one ingot may
be more than 50 h. In this process, all of the key process variables such as pulling speed, temperature, and heating power must be
carefully coordinated to ensure a desirable growth environment. If the process deviates from the norm, corrective actions must be
taken immediately to minimize the waste of material and energy. Therefore, monitoring the key variables online is of great
importance for the ingot growth process to ensure quick change detection and prevent a reduction in quality.

In this study, we focus on the heating power profile, which is a key variable in the process that affects ingot quality. Because of the
complex growth mechanism, the power has a dynamic profile in the growth cycle. Figure 2 shows four sample power profiles
collected during the ingot growth process. Each curve represents one growth cycle, which corresponds to the growth of one ingot.
Figure 3 shows additional aligned samples (the concept of profile alignment will be explained in a later section) and their mean and
standard deviation curves. As can be observed from the figures, the power profiles have different and time-varying means. The trend
of the profiles is governed by the physical mechanism of the growth process. An upward or downward shift of the entire profile does
not imply an engineering failure. However, a significant deviation from the mean trend indicates possible process changes that
should be detected. In addition, the profiles show larger variations in the early stage of the production cycle and gradually stabilize
as the process evolves; that is, the inherent variation of the profile is time dependent.

Compared with the profiles that have been studied in the existing literature, the power profiles of the ingot growth process have a
distinct feature. Because of the differing amounts of raw materials being used in production, the cycle time of each growth run, and
thus the profiles, differs in total length. When more raw materials are used, a longer cycle time is expected. Therefore, profiles of
different lengths do not indicate an out-of-control (OC; i.e., irregular) situation. Different lengths are expected as part of the inherent
variability of the manufacturing process. Moreover, in online monitoring, the profile will continue to grow with time to an unknown
limit. Although there are many observations of the profile when a production cycle finishes, the charting statistic must be evaluated
using incomplete online profiles. This growth in the lengths of the profiles makes the online monitoring problem unique.
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Figure 2. Examples of power profiles in the ingot growth process.
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Figure 3. Plots of aligned samples and pointwise sample mean and standard deviation. (a) A collection of aligned samples. (b) The mean and the standard deviation of the
aligned samples.
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The behavior of the ingot growth process resembles that of a batch process. Nomikos and Macgregor10 studied the monitoring of
batch processes that have multiple variables being collected continuously, and they proposed to extract the main features from the
profiles using projection-based methods. In their application, the entire profile of each batch is used for monitoring. In addition, the
profile data collected from the batch process are equal in length (i.e., the same number of data points). Therefore, there is no need to
align the profiles. Certain other studies have focused on a quantitative trend analysis of the profiles. Various algorithms have been
proposed to identify known trends or patterns from online, noisy profile observations.15–17

The growth of the profiles as in this study is also found in the dynamic signals in surveillance applications. Krieger et al.18 proposed
a sequential method for detecting a gradual change in a profile that can be characterized by a linear regression model. Frisen and
Wessman19 reviewed surveillance methods that are being used in diverse applications. Although the variables that are monitored
in surveillance study also evolve with time, unlike the ingot growth process, the surveillance variables do not require time alignment.

The profile trajectories collected from the ingot growth process convey important engineering knowledge about process failures.
Given a baseline profile representing an in-control process, any deviation of an online profile from the baseline may indicate a failure
in the growth process, usually caused by the process hardware or the raw materials. At that point, the growth process should be
stopped to minimize material and energy losses. The profile-to-profile variation may represent either slow or abrupt changes in
equipment conditions. For example, the resistivity of the heater will increase, as more production runs are completed, and the
efficiency of the thermal field gradually decreases, as the number of production cycles increases. Therefore, practitioners must
monitor this process and detect unexpected process shifts early.

In this study, we propose a method for the monitoring of profile trajectories. More specifically, we propose to use a time-warping
technique to align the raw profiles and build a baseline model and then use the generalized likelihood ratio for online monitoring
based on partially observed profile trajectories.

The paper is organized as follows. The details of the charting strategy are presented in Section 2. In Section 3, we study the
performance of the proposed method and compare this method with a benchmark method. In Section 4, we present a case study
of ingot growth processes to illustrate the use of the proposed method. Finally, we conclude this paper with suggestions for future
research in Section 5.
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2. Profile monitoring based on dynamic time warping

To monitor the profile trajectories collected from the ingot growth process, we propose a framework based on dynamic time warping
(DTW), as illustrated in Figure 4. Starting with historical profile samples, we must identify the in-control behavior of the profile variable.
Therefore, profiles with different lengths and locations are first aligned, and then, a baseline profile is calculated, which serves as the
in-control benchmark for online monitoring. During the online monitoring stage, the observed trajectory of each incomplete profile is
first aligned with the in-control baseline. Then, a charting statistic is evaluated to make a decision about the status of the process. The
alignment and online monitoring calculations are repeated at each step, as a new observation for the profile becomes available and
the trajectory progresses.

2.1. Profile alignment

To construct a reliable baseline for online monitoring, all profiles must be aligned to have equal lengths. All in-control profiles will
exhibit a similar pattern reflecting the physics of the process. Thus, the alignment operation will use the similarities in the patterns
to expand or compress various segments of one profile to match another one. The DTW algorithm is suitable for this purpose.

Dynamic time warping was first proposed in the context of speech recognition to account for the differences in speaking rates
among speakers and utterances. The rationale behind DTW is that we can locally expand or compress any two profiles to make
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827



Figure 4. The framework for ingot growth profile monitoring.
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one resemble the other as much as possible.20,21 Gupta et al.22 and Dai and Zhao23 used DTW for fault diagnosis. Nelson and Runger24

used DTW for process behavior prediction. DTW was first used for pattern matching in historical data. When the features of the
current process match any of the known patterns, the future behavior of the process is predicted by referring to the historical data.
Kassidas et al.25 employed DTW to synchronize historical profiles and created a database of historical time-aligned in-control profiles,
but they did not explain the methods for choosing a standard profile or how to monitor a new profile.

Denote any two profiles as X ¼ x1; x2;…; xLXf g and Y ¼ y1; y2;…; yLY
� �

, where LX and LY are the total lengths of profiles X and Y,
respectively. DTW attempts to find the best mapping relationship that matches one of the profiles (the query profile) to the other
profile (the reference profile) and to increase the similarity in their variation patterns. The mapping operation may compress one
segment of the profile while expanding another segment. For example, in the mapping relationship {(1, 1), (1, 2), (2, 3), (3, 3),…, (LX, LY)},
point x1 is expanded to match two points, y1 and y1, on profile Y, and points x2 and x3 are compressed to match a single point y3.

Let (ϕx(k),ϕy(k)), k= 1, 2,…, T be the matched pairs, meaning that the ϕx(k)-th point of profile X is matched with the ϕy(k)-th point
of profile Y, where ϕx(k) ∈ {1, 2,… LX} and ϕy(k) ∈ {1, 2,… LY} are the point indices of the profiles. Furthermore, denote a certain
measure of the distance between a matched pair by d(ϕx(k),ϕy(k)). Then, the DTW algorithm attempts to find the best alignment
by minimizing the total distance of all the matched pairs:

D X; Yð Þ ¼ min
ϕ

XT
k¼1

d ϕx kð Þ;ϕy kð Þ
� �

: (1)

In practice, the Euclidian distance is commonly used. The solution is usually obtained using a dynamic programming algorithm.
To meet requirements that arise in practical applications, certain additional constraints can be included in the DTW algorithm. For

example, a monotonicity constraint ensures that the data points in the query profile and those in the reference profiles have the same
time sequence, and a symmetric continuity constraint ensures that all data points in the query profile are mapped into the reference
profile and that no points are missed. In certain applications, constraints on the initial and final conditions are imposed to ensure that
the start and end points of the two profiles are exactly aligned. In other cases such as the online monitoring of the growth profile in
this study, only the initial points are constrained to be aligned; the final points are free. Some examples of DTW-aligned profiles are
shown in Figure 5. Details of the DTW algorithm are given in Giorgino21 and the references therein.

It should be noted that DTW is not invariant to location shifts of the profiles. Therefore, the mean of the profiles should be removed
before alignment. Otherwise, the location and the mean patterns are confounded, which may adversely affect the alignment
operation. Figure 5(a) shows the two profiles with unequal means (not adjusted for mean), Figure 5(b) shows the two profiles with
the means removed, and Figures 5(c) and 5(d) show the aligned profiles without and with the adjustment for the mean, respectively.
In Figure 5(c), the latter segment of the query profile is incorrectly mapped to the earlier segment of the reference profile. When the
means of the two profiles are removed first, this problem is resolved, as can be observed in Figure 5(d).

In addition, the aforementioned treatment of historical profiles does not involve identifying OC profiles, which would require a
specially designed algorithm. Therefore, here, we assume that all historical profiles are in control and focus on baseline profile
calculation for Phase II online monitoring. The Phase I identification of abnormal profiles from a collection of unaligned ones is a topic
that deserves future research efforts.

2.2. Baseline profile calculation

Given a set of aligned profiles, we must construct a baseline profile for online monitoring. A baseline profile will be an ‘average’ of
multiple profiles and will best capture the variations in them. During online monitoring, the baseline profile will be used as the
reference for comparison and deviation identification. However, the averaging operation cannot be performed if the profiles are
not aligned because they have different lengths in time. Therefore, we will need to employ the aforementioned DTW algorithm to
align the profiles first before calculating their average.
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827
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Figure 5. Profile alignment using DTW: (a) two profiles without mean adjustment, (b) two profiles with mean adjustment, (c) alignment of the unadjusted profiles, and (d)
alignment of the mean-adjusted profiles.
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To align multiple profiles, one additional challenge is the selection of the reference profile. Given the reference profile, all other
profiles will be treated as queries and mapped to the reference profile. However, a different choice of the reference profile will lead
to notably different alignment results. In this study, we propose the following iterative algorithm to identify a reference profile that
minimizes the total distance:

Algorithm 1: Reference profile selection
Let Pi, i=1,…,N, denote N profiles.

Step 1. Choose Pi as the reference profile, and calculate D(Pi, Pj), as shown in Eqn (1) for all j≠ i.
Step 2. Repeat step 1 for i=1,…,N. Choose profile Pi, where i is the argument of mini

X
j≠i

D Pi; Pj
� �

, as the reference profile.

For a collection of N profiles, the best choice for the reference profile is the profile that is nearest the ‘center’ of the samples. In
step 1, all other profiles are adjusted and mapped to Pi. After alignment, the total distance of all the profiles aligned to Pi is calculated,
and this distance is a measure of the deviation of the samples from the reference Pi. In step 2, we can obtain N deviation measures
D(Pi, Pj), i= 1,…,N. The profile with the smallest deviation is the closest profile to the ‘center’ of the samples, and this profile is chosen
as the final reference profile for the averaging calculation. The search procedure is graphically illustrated in Figure 6.

After the reference profile is identified and all other profiles are aligned to it, we have a collection of time-aligned samples. For each
time index t, the corresponding mean mt and the standard deviation st can be estimated from the N-aligned profiles. The estimated
mt will be treated as the baseline profile.
8
1
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2.3. Online profile alignment and monitoring

During online process monitoring, the profile trajectory is compared with the baseline profile, and an alarm is triggered if a significant
deviation is detected. Because the length of the profile trajectory increases with time, the time alignment should be performed before
online monitoring. In addition, the profile trajectory is always incomplete during online monitoring until the process finishes.
Thus, when the query profile (the trajectory) is being aligned to the reference profile (the baseline profile), we force the query
profile and the reference profile to have the same starting point but leave the final point free. In this manner, the partially observed
profile trajectory can be aligned with the first part of the reference profile. Detection of abnormalities will be based on the aligned
segment only.

Let the profile trajectory after alignment be yt, t=1,…, n, and we assume that each point yt follows a normal distribution with
an unknown but dynamically changing mean and standard deviation. Because the variation in the in-control samples also varies
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827
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over time, we calculate the difference between the online profile trajectory and the baseline profile and standardize the former
using the time-varying variation:

y ′t ¼ yt �mtð Þ=st: (2)

Hence, all points on the residual profile follow the standard normal distribution y ′teN 0; 1ð Þ.
It is worth noting that in this work, we apply no limitations on the form of the baseline profile. It is assumed that the baseline

profile is completely captured by mt and st. Thus, the standardization and normally distributed trajectory in Eqn (2) could be
monitored using existing SPC algorithms. All points on the standardized trajectory are assumed to be independent. If not, which is
highly possible if the trajectory is observed with a high frequency, we suggest removing autocorrelation by fitting a time series model
and monitor the uncorrelated residuals. Alternatively, SPC algorithms for autocorrelated processes26,27 could be utilized.

Hawkins et al.28 proposed a generalized likelihood ratio test (GLRT) to detect changes in a process using a change-point model. We
apply this method and detect shifts in the residual profile using the following monitoring statistic:

T max;n ¼ max
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j n� jð Þ

n

r
X1j � Xjn

sjn

 !
;

where

X1j ¼
Xj
t¼1

y ′t=j; Xjn ¼
Xn
t¼jþ1

y ′t= n� jð Þ; sjn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vjn= n� 2ð Þ

q
;

and

Vjn ¼
Xj
t¼1

y ′t � X1j

� �2 þ Xn
t¼jþ1

y ′t � Xjn

� �2
:

Hawkins et al.28 suggested that the control limits hn should be the two-sided α/(n� 1) fractile of a t-distribution with n� 2 degrees
of freedom, thus producing a test with a size of at most α, where α is a predefined false alarm rate. Therefore, an alarm is triggered in
the residual profile if

T max;n

		 		 > hn: (3)

If the charting statistic exceeds the control limits, we conclude that the process has shifted. As the process evolves, the monitoring
statistic is evaluated when a new observation becomes available after the time alignment. In this manner, process shifts can be
detected using the chart with incomplete online profile trajectories. Because this chart is constructed based on the DTW algorithm,
we call it the DTW chart.
3. Performance study

In this section, we study the performance of the DTW chart and compare this method with another method. In the literature, there are
few methods that can be directly used to monitor the profile trajectories that we discuss here. Zhu et al.29 studied a similar problem
and proposed an adaptive EWMA (AEWMA) chart to monitor profile trajectories. In the following texts, we briefly introduce the
AEWMA chart and compare our proposed method with it.

The AEWMA chart was modified from existing methods to suit the time-varying feature of the growth profiles. Capizzi and
Masarotto30 proposed an AEWMA chart to monitor a univariate process with a constant mean. Because the growth profile has a
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827
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time-dependent mean trend, AEWMA uses the AEWMA algorithm of Capizzi and Masarotto30 to capture the dynamic mean behavior
of the profile as follows:

μ̂t ¼ 1� w etð Þð Þμ̂t�1 þ w etð Þyt;
where μ̂t is an estimate of the process mean at time t, w(et) =ϕ(et)/et is a weighting function, and et ¼ xt � μ̂t�1 can be considered as
the prediction error. The weighting function adaptively changes with the prediction error in the following ways:

ϕ etð Þ ¼
et þ 1� λð Þk if et < �R

λet if etj j < R

et � 1� λð Þk if et > R

8><>: ;

where λ is a smoothing parameter and R is determined according to the variation of the profile. If the magnitude of the prediction
error is less than R, then the performance of AEWMA is similar to that of conventional EWMA; if the magnitude of the prediction error
is greater than R, then the effective smoothing parameter is chosen to be larger than λ. Therefore, it is expected that the AEWMA chart
can capture both slow and rapid changes in the growth profile and provide a reasonable smoothing of the profile.

The adaptive chart proposed by Capizzi and Masarotto30 is based on the assumption that the variation in the process is fixed.
However, the variation in the profile trajectories changes over time. Therefore, with our AEWMA chart, we update the standard
deviation of the profile using a method developed by MacGregor and Harris,31

σ̂ t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γð Þσ̂ 2

t�1�þ γ yt � μt�1ð Þ2
q

:

where γ is a smoothing parameter that determines the impact of historical observations on estimating the standard deviation.
Unlike the DTW chart, the AEWMA chart estimates the trend of the profile trajectories using the current profile only. The baseline

mean and standard deviation of the profile trajectory, μ̂t and σ̂ t, are all recursively updated using online points. No historical profiles
are required to build the AEWMA control chart.

Finally, with the AEWMA chart, one monitors the growth profile with control limits

UCL ¼ μt þ h*σ̂ t

CL ¼ μt

LCL ¼ μt � h*σ̂ t

8><>: ; (4)

where h* controls the width of the control limits and is identified through simulations for achieving a predetermined in-control ARL
value.
8
2
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3.1. Simulation settings

As previously mentioned, the profiles have certain dynamics, but the trajectories differ from one profile to another. Thus, we design a
two-stage model to mimic the profile trajectories of the growth process. The first stage is from 0 to 2πωmin, a complete cycle of a
sinusoidal function. The model used is

yt ¼ K þ a sin
t

ω


 �
þ ε1t; 0 < t ≤2π ω;

where ε1t eN 0;σ2
t

� �
. The second stage is from (2π ω+ 1) to (2π ω+ 30/b)min. The model used is

yt ¼ y2π ω þ b t � 2π ωð Þ þ ε2t; 2π ω < t < 2π ωþ 30=b;

where ε2t eN 0;σ2
t

� �
. In this setting, the overall trends of the profiles are similar, whereas the profiles can be extended or compressed

by changing the parameters.
To simulate a misalignment of the profiles, the values of the four parameters of the model, K, α, ω, and b, are randomly generated

from uniform distributions using the values shown in Table I. To simulate time-varying variations, the standard deviation σt was made
a time-varying function. Figure 7 shows five in-control profiles generated from the aforementioned two-stage algorithm. Note that
the profiles are not aligned by default, so the misalignments should not be treated as process failures.

To assess the performance of the proposed method, we studied four types of failure patterns: (i) a sudden shift in the mean in the
second stage at τ1 = 35min; (ii) a gradual drift (a mean shift with an increasing magnitude) in the second stage after τ2 = 45min; (iii) a
constant cyclical shift after τ1 = 35min with an added signal δt>τ1 ¼ A sin t � τ1ð Þπ=ω½ � and a fixed magnitude; and (iv) an increasing

cyclical shift after τ1 = 35min with an added signal δt>K1 ¼ A�e0:05� t�τ1ð Þ� sin t � τ1ð Þπ=ω½ �, which has an amplitude that increases
with time after τ1 = 35min. The magnitude of the failure increases with time, as shown in Table II. The shift patterns are also plotted
in Figure 8. The sudden mean shift and the gradual drift are common failure patterns considered in conventional SPC. The cyclical
shifts are used to simulate the dynamic changes caused by the vibrations in the process, which are commonly observed in complex
engineering processes.32,33
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827



Table I. Parameter settings to generate in-control profiles

Parameters Effects Values

K Position in y-axis Uniform (0,3)
α Amplitude of sinusoidal function Uniform (5,10)
ω Length in time of the sinusoidal function Uniform (5,7)
b Slope of the linear function Uniform (0.5,1)
σt Standard deviation of the profile σt= e� 0.01t
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Figure 7. Plots of simulated in-control profiles.

Table II. The settings of the failure feature

Shift pattern Severity of failure

Sudden shift K→ K+ δK, t> τ1 δK=1 δK=5 δK=11
Gradual drift b→ b+ δb, t> τ2 δb= 0.2 δb= 0.4 δb=0.6
Constant cyclical shift δ= A sin[(t� τ1)π/ω], t> τ1 A = 1,ω= 8 A= 3,ω= 8 A= 5,ω=8

A = 3,ω= 2 A= 3,ω= 4 A= 3,ω=16
Increasing cyclical shift δ ¼ Ae0:05� t�τ1ð Þ sin t � τ1ð Þπ=ω½ �, t> τ1 A = 0.3,ω= 8 A= 0.5,ω= 8 A= 1.0,ω= 8
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3.2. Control chart implementation

Based on the previous models and settings, we implemented the proposed DTW chart to monitor the simulated processes and
compared its performance with that of the AEWMA chart. First, 20 profiles were generated using the parameters given in Table I
without adding any shifts. Then, these profiles were aligned using DTW. A baseline profile was calculated using the methods
introduced in Subsections 2.1 and 2.2. Subsequently, online profiles were generated at each time step. When a new point on the
online profile became available, the incomplete profile trajectory was mapped with respect to the baseline profile using DTW. Then,
the aligned profile was standardized using Eqn (2). We found that the residual profile has strong autocorrelation, which is adequately
characterized by an AR(1) time series model. Therefore, an AR(1) model was fitted to the residual sequence to remove the
autocorrelation; the uncorrelated residuals were monitored using the chart in Eqn (3).

The AEWMA chart defined in Eqn (4) was also applied to the same set of simulated profiles for comparison. To make the in-control
average run length (ARL) of the two control charts identical, the parameter values for the AEWMA chart were λ=0.4, γ= 0.01, k= 1,
and h= 2.97.
3.3. Performance comparison

The ARL is widely used for evaluating the performance of a control chart. In traditional profile monitoring, each profile is an individual
sample, and the ARL is the number of profiles inspected before an alarm is triggered. However, in monitoring profile trajectories, the
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827
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Figure 8. Plots of out-of-control patterns: (a) sudden shift, (b) gradual drift, (c) constant cyclical shift, and (d) growing cyclical shift.
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charting statistic is evaluated at each step when a new point on the profile becomes available. In this situation, the ARL metric cannot
be used directly.

Therefore, in this study, we used the true alarm rate and the false alarm rate to determine the sensitivity and accuracy of the charts.
In addition, we calculated the average detection delay, which is defined as the number of steps that a profile continues (starting from
the change point) before an alarm is triggered, as one indicator for evaluating the performance. If a shift signal is added to the growth
profile but an alarm is triggered before the change point, the alarm is treated as a false alarm. If the profile terminates before an alarm
is triggered, this sample is simply ignored when calculating either the false alarm rate or the average detection delay.

In fact, because the process may terminate before an alarm is triggered, the average delay could be considered as a sample from a
truncated distribution, which would allow a more accurate calculation of the average delay. This approach presents other problems
involving parameter estimation using truncated samples and difficulties in comparing performance, so we simply ignored those
profiles without any alarms in calculating the average delay. In this manner, the average delay is not an accurate reflection of the true
delay that the chart may have. As both charts were evaluated using the same standard, the average delay is nevertheless a valid
measure for a fair performance comparison.

To calculate the profile-wise charting performance, we simulated 5000 profiles for each shift pattern and calculated the number of
alarms. The alarm rates are calculated as the ratio of the number of true/false alarms and the total number of profiles. When a profile
triggered an alarm, the process was stopped.

The simulation results are summarized in Table III. It can be observed that the DTW chart and the AEWMA chart have nearly equal
level of alarm rates when the process is in control. The AEWMA chart has a smaller average detection delay than the DTW chart, which
implies that with the AEWMA chart, more signals occur in the earlier stage of the growth process. As the OC signals are added to the
process in a later stage of the process and alarms triggered before the occurrence of the change point are treated as false alarms, we
see that the AEWMA chart also has a higher false alarm rate than the DTW chart when the process becomes OC. In addition, as
increasing shift magnitude does not affect those observations collected before the change point, the false alarm rates are not affected
by shift magnitude.

A number of observations can be made regarding OC processes:

1. When the process undergoes a sudden shift in the mean, the AEWMA chart reports more true alarms and exhibits a shorter
average detection delay than the DTW chart, which suggests that the AEWMA chart is better at detecting a sudden mean shift.
However, in this case, the AEWMA chart also produces a large proportion of false alarms.

2. When the process has a gradual drift in the mean, the DTW chart detects more OC profiles with a lower false alarm rate than the
AEWMA chart. However, because the DTW chart usually requires more observations to detect a failure, it has a longer average
delay time before triggering an alarm than the AEWMA chart.

3. For cyclical shifts with constant amplitudes, we can make several observations. For the case with ω=8, the DTW chart is superior
to the AEWMA chart with a higher true alarm rate and lower false alarm rate, but the DTW chart exhibits greater detection delay.
The detection accuracy increases when the shift magnitude increases from 1 to 5. However, for the same magnitude (A= 3), if
the frequency of the sine wave is sufficiently high (ω= 2) or low (ω= 16), the performance of the DTW chart deteriorates. If the
frequency is exceedingly low, the sine wave has a long period, and the failure signal becomes similar to a sustained drift. If the
frequency is sufficiently high, a valid signal may be incorrectly treated as noise in the DTW alignment algorithm.
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827



Table III. Performance comparison

True alarm rate False alarm rate Average detection delay

DTW AEWMA DTW AEWMA DTW AEWMA

In control — 2.0 2.0 46 25.8
Sudden shift δK= 1 3.4 3.1 0.9 1.7 24.1 3.5

δK= 5 58.2 97.8 0.9 1.7 4.2 1.6
δK= 11 98.5 98.3 0.9 1.7 1.6 1.0

Gradual drift δb=0.2 36.0 3.2 1.0 2.0 23.3 1.2
δb=0.4 63.8 40.3 1.0 2.0 11.4 1.1
δb=0.6 69.8 67.0 1.0 2.0 4.4 1.1

Constant cyclical shift A= 1,ω=8 6.4 1.6 0.9 1.7 24.0 5.3
A= 3,ω=8 63.9 36.2 0.9 1.7 16.8 7.2
A= 5,ω=8 95.8 82.1 0.9 1.7 11.0 7.5
A= 3,ω=2 31.4 87.3 0.9 1.7 17.2 5.4
A= 3,ω=4 75.7 62.1 0.9 1.7 10.9 8.5
A= 3,ω=16 27.9 34.6 0.9 1.7 21.2 7.3

Increasing cyclical shift A= 0.3,ω= 8 34.4 2.9 0.9 1.7 41.6 53.4
A= 0.5,ω= 8 64.3 26.1 0.9 1.7 37.2 48.8
A= 1.0,ω= 8 93.0 73.9 0.9 1.7 26.8 35.5
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4. For cyclical shifts with increasing amplitudes, the DTW chart is uniformly better than the AEWMA chart and also has shorter
average detection delays. This fact shows that the DTW chart is more sensitive if the process becomes unstable with increasing
levels of vibration.

Notably, the average detection delay is calculated using profiles with alarms only. Therefore, the true and false alarm rates reflect
the performance of the charts on the profile level, and the average delay reflects the performance of the charts given that an alarm
has been triggered. Therefore, a chart with a higher true alarm rate and a lower false alarm rate is recommended, even though the
detection delay is greater.

In summary, the AEWMA chart is more successful in detecting a sudden mean shift, whereas the DTW chart can detect gradual
drifts and cyclical shifts more rapidly in most cases. This result can be explained by the fact that the AEWMA chart adjusts to the
dynamic profile from its past observations using EWMA smoothing, and a sudden shift or a drift signal that cannot be smoothed
by EWMA smoothing is easily detected. However, as shown in Figure 5, the DTW chart can be easily distorted by sudden mean shifts.
In other words, sudden mean shifts may be incorrectly treated as an increasing trend in the growth profile by the alignment
algorithm. However, the DTW alignment algorithm is not adversely affected by the cyclical signals, and it is therefore more sensitive
to these shifts.
4. Application to an ingot growth process

In this section, we use the DTW chart and the AEWMA chart to analyze heating power profiles collected from ingot growth
cycles. Ten historical conforming profiles are used to estimate the baseline profile for the DTW chart (refer to Figures 2 and
3 for plots of sample profiles). In online monitoring, the current trajectory must be aligned with the baseline profile at each
step, as a new observation becomes available. To save computational time, we sampled one point every 10 steps from the
raw data for the demonstration.

Both charts were set to have a false alarm rate of 0.01. The parameters used for the AEWMA chart were λ= 0.4, γ= 0.005,
k= 0.05, and h= 3. In practice, an autoregressive model is used to remove the autocorrelation in the residual profile before
implementing the DTW chart. Both charts used some initial observations (15 data points) for warm-up.

Figure 9 shows two profiles, one of which was considered conforming by engineers and the other profile considered
nonconforming. These profiles were monitored using the two control charts, the behaviors of which are shown in Figure 10.
It can be observed that neither chart triggered any alarms for the conforming profile. For the nonconforming profile, the
DTW chart triggered an alarm at step 142, and the AEWMA chart triggered an alarm at step 141. The one-step delay of the
DTW chart was attributed to the AR(1) model fitted to the residuals before calculating the charting statistics. It is evident from
Figure 9 that the OC profile was smooth before around step 140, but after that, a very large deviation from the process mean
occurred. This shows that the power became unstable at that time. However, because this abnormal change was not identified
and compensated for by the operator in practice, the process deteriorated and failed quickly. This example additionally shows
the importance of timely detection of process changes in a long-duration process.
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827
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5. Conclusions

In our study, we focused on the monitoring of profile trajectories, which are time unaligned with finite but unequal lengths and are
incomplete during online monitoring. Therefore, conventional SPC cannot be directly applied for online monitoring.

In this study, we proposed a method for monitoring such growth profiles with DTW-based alignment. In the proposed method, a
baseline profile is calculated from aligned historical profiles. During online monitoring, incomplete profile trajectories are aligned
with the baseline profile, and then, the GLRT statistic, which is derived from change-point theory, is evaluated to detect OC
situations. Compared with the modified AEWMA chart, the proposed DTW chart is less sensitive to sudden mean shifts, but it
has better performance in detecting gradual drifts and cyclical dynamic shifts, which are frequently observed in complex
engineering processes.

This study focused on the monitoring of profile trajectories given a set of historical profiles; the baseline profile is cleated from the
known in-control profiles. The identification of abnormal profiles from a historical dataset was not discussed here but is worthy of
research in the future. In addition, for baseline profile calculations, an exhaustive search algorithm would require considerable
computational power if the number of historical profiles is large. A computationally more efficient algorithm for baseline profile
calculations would be an interesting goal for future research.
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827
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We observed that the DTW chart is less powerful than the AEWMA chart in detecting sudden mean shifts. The main reason is that a
mean shift may not be properly addressed in the DTW alignment algorithm. Therefore, a more robust DTW algorithm designed
specifically for SPC is a topic that deserves more research. In addition, because engineering processes are often characterized
by multiple growth profiles, the monitoring of these processes using multiple misaligned profiles is also an important topic
for researchers.
Acknowledgements

We are grateful to the anonymous referees for their valuable comments, which have helped us improve this paper greatly. This
work was supported by the National Natural Science Foundation of China under Grant No. 71072012 and the Tsinghua University
Initiative Scientific Research Program.
References
1. Stoumbos ZG, Reynolds Jr MR, Ryan TP, Woodall WH. The state of statistical process control as we proceed into the 21st century. Journal of the

American Statistical Association 2000; 95:992–998.
2. Montgomery DC. Introduction to Statistical Quality Control (5th edn.). John Wiley: Hoboken, N.J., 2005; 759.
3. Woodall WH, Spitzner DJ, Montgomery DC, Gupta S. Using control charts to monitor process and product quality profiles. Journal of Quality

Technology 2004; 36:309–320.
4. Noorossana R, Saghaei A, Amiri A. Statistical Analysis of Profile Monitoring. John Wiley & Sons: Hoboken, NJ, 2011.
5. Wang K, Tsung F. Using profile monitoring techniques for a data-rich environment with huge sample size. Quality and Reliability Engineering

International 2005; 21:677–688.
6. Williams JD, Woodall WH, Birch JB. Statistical monitoring of nonlinear product and process quality profiles. Quality and Reliability Engineering

International 2007; 23:925–941.
7. Kang L, Albin S. On-line monitoring when the process yields a linear profile. Journal of Quality Technology 2000; 32:418–426.
8. Colosimo BM, Semeraro Q, Pacella M. Statistical process control for geometric specifications: on the monitoring of roundness profiles. Journal of

Quality Technology 2008; 40:1–18.
9. Jones M, Rice JA. Displaying the important features of large collections of similar curves. The American Statistician 1992; 46:140–145.

10. Nomikos P, MacGregor JF. Multivariate SPC charts for monitoring batch processes. Technometrics 1995; 37:41–59.
11. Jeong MK, Lu JC, Huo XM, Vidakovic B, Chen D. Wavelet-based data reduction techniques for process fault detection. Technometrics 2006; 48:26–40.
12. Walker E, Wright SP. Comparing curves using additive models. Journal of Quality Technology 2002; 34:118–129.
13. Zou CL, Tsung FG, Wang ZJ. Monitoring profiles based on nonparametric regression methods. Technometrics 2008; 50:512–526.
14. Del Castillo E, Colosimo BM. Statistical shape analysis of experiments for manufacturing processes. Technometrics 2011; 53:1–15.
15. Rengaswamy R, Venkatasubramanian V. A syntactic pattern-recognition approach for process monitoring and fault diagnosis. Engineering

Applications of Artificial Intelligence 1995; 8:35–51.
16. Rengaswamy R, Hägglund T, Venkatasubramanian V. A qualitative shape analysis formalism for monitoring control loop performance. Engineering

Applications of Artificial Intelligence 2001; 14:23–33.
17. Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K. A review of process fault detection and diagnosis: Part III: Process history based methods.

Computers & Chemical Engineering 2003; 27:327–346.
18. Krieger AM, Pollak M, Yakir B. Surveillance of a simple linear regression. Journal of the American Statistical Association 2003; 98:456–469.
19. Frisen M, Wessman P. Evaluations of likelihood ratio methods for surveillance: differences and robustness. Communications in Statistics - Simulation

and Computation 1999; 28:597–622.
20. Myers C, Rabiner L. A comparative study of several dynamic time-warping algorithms for connected word recognition. The Bell System Technical

Journal 1981; 60:1389–1409.
21. Giorgino T. Computing and visualizing dynamic time warping alignments in r: The dtw package. Journal of Statistical Software 2009; 31:1–24.
22. Gupta A, Samanta A, Kulkarni B, Jayaraman V Fault diagnosis using dynamic time warping. In: Pattern Recognition and Machine Intelligence,

Ghosh A, De RK, Pal SK (eds). Springer: Berlin Heidelberg, 2007; 57–66.
23. Dai Y, Zhao J. Fault diagnosis of batch chemical processes using a dynamic time warping (DTW)-based artificial immune system. Industrial &

Engineering Chemistry Research 2011; 50:4534–4544.
24. Nelson BJ, Runger GC. Predicting processes when embedded events occur: dynamic time warping. Journal of Quality Technology 2003; 35:213–226.
25. Kassidas A, MacGregor JF, Taylor PA. Synchronization of batch trajectories using dynamic time warping. AIChE Journal 1998; 44:864–875.
26. Montgomery DC, Mastrangelo CM. Some statistical process control methods for autocorrelated data. Journal of Quality Technology 1991; 23:179–193.
27. Apley DW, Shi J. The GLRT for statistical process control of autocorrelated processes. IIE Transactions 1999; 31:1123–1134.
28. Hawkins DM, Qiu PH, Kang CW. The changepoint model for statistical process control. Journal of Quality Technology 2003; 35:355–366.
29. Zhu L, Dai C, Sun H, Li W, Jin R, Wang K. Curve monitoring for a single-crystal ingot growth process. Department of Industrial Engineering, Tsinghua

University, 2014. Avaliable at http://www.ie.tsinghua.edu.cn/kbwang/
30. Capizzi G, Masarotto G. An adaptive exponentially weighted moving average control chart. Technometrics 2003; 45: 199–207.
31. MacGregor J, Harris T. The exponentially weighted moving variance. Journal of Quality Technology 1993; 25:106–118.
32. Wang K, Tsung F. Monitoring feedback-controlled processes using adaptive T2 schemes. International Journal of Production Research 2007;

45:5601–5619.
33. Wang K, Tsung F. An adaptive T2 chart for monitoring dynamic systems. Journal of Quality Technology 2008; 40:109–123.
Authors' biographies

Chenxu Dai is a graduate student in the Department of Industrial Engineering, Tsinghua University, Beijing, China. He received both
his BS and MS degrees in Industrial Engineering from Tsinghua University, Beijing, China. His research focuses on the statistical
modeling, monitoring, and control of engineering systems.
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827

http://www.ie.tsinghua.edu.cn/kbwang/


C. DAI, K. WANG AND R. JIN
Dr. Kaibo Wang is an associate professor with the Department of Industrial Engineering, Tsinghua University, Beijing, China. His
research is devoted to statistical quality control and data-driven complex system modeling, monitoring, diagnosis, and control, with
a special emphasis on the integration of engineering knowledge and statistical theories for solving problems from the real industry.
Dr. Wang is a senior member of ASQ and a member of INFORMS and IIE.

Dr. Ran Jin is an assistant professor at the Grado Department of Industrial and Systems Engineering at Virginia Tech. He received his
PhD degree in Industrial Engineering from Georgia Tech in 2011, his master’s degree in Industrial Engineering (2007) and in Statistics
(2009), both from the University of Michigan, and his bachelor’s degree in Electronic Engineering from Tsinghua University in 2005.
His research interests are in engineering-driven data fusion for manufacturing system modeling and performance improvements,
such as the integration of data mining methods and engineering domain knowledge for multistage system modeling and variation
reduction, and sensing, modeling, and optimization based on spatial correlated responses. He is a member of INFORMS, IIE, and ASME.
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 815–827

8
2
7


